Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Binary Error-Correcting Codes with Minimal Noiseless Feedback (2212.05673v2)

Published 12 Dec 2022 in cs.IT, cs.DS, and math.IT

Abstract: In the setting of error-correcting codes with feedback, Alice wishes to communicate a $k$-bit message $x$ to Bob by sending a sequence of bits over a channel while noiselessly receiving feedback from Bob. It has been long known (Berlekamp, 1964) that in this model, Bob can still correctly determine $x$ even if $\approx \frac13$ of Alice's bits are flipped adversarially. This improves upon the classical setting without feedback, where recovery is not possible for error fractions exceeding $\frac14$. The original feedback setting assumes that after transmitting each bit, Alice knows (via feedback) what bit Bob received. In this work, our focus in on the limited feedback model, where Bob is only allowed to send a few bits at a small number of pre-designated points in the protocol. For any desired $\epsilon > 0$, we construct a coding scheme that tolerates a fraction $ 1/3-\epsilon$ of bit flips relying only on $O_\epsilon(\log k)$ bits of feedback from Bob sent in a fixed $O_\epsilon(1)$ number of rounds. We complement this with a matching lower bound showing that $\Omega(\log k)$ bits of feedback are necessary to recover from an error fraction exceeding $1/4$ (the threshold without any feedback), and for schemes resilient to a fraction $1/3-\epsilon$ of bit flips, the number of rounds must grow as $\epsilon \to 0$. We also study (and resolve) the question for the simpler model of erasures. We show that $O_\epsilon(\log k)$ bits of feedback spread over $O_\epsilon(1)$ rounds suffice to tolerate a fraction $(1-\epsilon)$ of erasures. Likewise, our $\Omega(\log k)$ lower bound applies for erasure fractions exceeding $1/2$, and an increasing number of rounds are required as the erasure fraction approaches $1$.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.