Papers
Topics
Authors
Recent
2000 character limit reached

A new approach to handle curved meshes in the hybrid high-order method (2212.05474v2)

Published 11 Dec 2022 in math.NA and cs.NA

Abstract: The hybrid high-order method is a modern numerical framework for the approximation of elliptic PDEs. We present here an extension of the hybrid high-order method to meshes possessing curved edges/faces. Such an extension allows us to enforce boundary conditions exactly on curved domains, and capture curved geometries that appear internally in the domain e.g. discontinuities in a diffusion coefficient. The method makes use of non-polynomial functions on the curved faces and does not require any mappings between reference elements/faces. Such an approach does not require the faces to be polynomial, and has a strict upper bound on the number of degrees of freedom on a curved face for a given polynomial degree. Moreover, this approach of enriching the space of unknowns on the curved faces with non-polynomial functions should extend naturally to other polytopal methods. We show the method to be stable and consistent on curved meshes and derive optimal error estimates in $L2$ and energy norms. We present numerical examples of the method on a domain with curved boundary, and for a diffusion problem such that the diffusion tensor is discontinuous along a curved arc.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.