Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Stochastic First-Order Learning for Large-Scale Flexibly Tied Gaussian Mixture Model (2212.05402v3)

Published 11 Dec 2022 in cs.LG

Abstract: Gaussian Mixture Models (GMMs) are one of the most potent parametric density models used extensively in many applications. Flexibly-tied factorization of the covariance matrices in GMMs is a powerful approach for coping with the challenges of common GMMs when faced with high-dimensional data and complex densities which often demand a large number of Gaussian components. However, the expectation-maximization algorithm for fitting flexibly-tied GMMs still encounters difficulties with streaming and very large dimensional data. To overcome these challenges, this paper suggests the use of first-order stochastic optimization algorithms. Specifically, we propose a new stochastic optimization algorithm on the manifold of orthogonal matrices. Through numerous empirical results on both synthetic and real datasets, we observe that stochastic optimization methods can outperform the expectation-maximization algorithm in terms of attaining better likelihood, needing fewer epochs for convergence, and consuming less time per each epoch.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.