Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The unstable formula theorem revisited via algorithms (2212.05050v3)

Published 9 Dec 2022 in math.LO, cs.DM, cs.LG, cs.LO, and math.CO

Abstract: This paper is about the surprising interaction of a foundational result from model theory, about stability of theories, with algorithmic stability in learning. First, in response to gaps in existing learning models, we introduce a new statistical learning model, called ``Probably Eventually Correct'' or PEC. We characterize Littlestone (stable) classes in terms of this model. As a corollary, Littlestone classes have frequent short definitions in a natural statistical sense. In order to obtain a characterization of Littlestone classes in terms of frequent definitions, we build an equivalence theorem highlighting what is common to many existing approximation algorithms, and to the new PEC. This is guided by an analogy to definability of types in model theory, but has its own character. Drawing on these theorems and on other recent work, we present a complete algorithmic analogue of Shelah's celebrated Unstable Formula Theorem, with algorithmic properties taking the place of the infinite.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.