Papers
Topics
Authors
Recent
2000 character limit reached

LADIS: Language Disentanglement for 3D Shape Editing

Published 9 Dec 2022 in cs.CV and cs.CL | (2212.05011v1)

Abstract: Natural language interaction is a promising direction for democratizing 3D shape design. However, existing methods for text-driven 3D shape editing face challenges in producing decoupled, local edits to 3D shapes. We address this problem by learning disentangled latent representations that ground language in 3D geometry. To this end, we propose a complementary tool set including a novel network architecture, a disentanglement loss, and a new editing procedure. Additionally, to measure edit locality, we define a new metric that we call part-wise edit precision. We show that our method outperforms existing SOTA methods by 20% in terms of edit locality, and up to 6.6% in terms of language reference resolution accuracy. Our work suggests that by solely disentangling language representations, downstream 3D shape editing can become more local to relevant parts, even if the model was never given explicit part-based supervision.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.