Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MED-SE: Medical Entity Definition-based Sentence Embedding (2212.04734v1)

Published 9 Dec 2022 in cs.LG, cs.AI, and cs.CL

Abstract: We propose Medical Entity Definition-based Sentence Embedding (MED-SE), a novel unsupervised contrastive learning framework designed for clinical texts, which exploits the definitions of medical entities. To this end, we conduct an extensive analysis of multiple sentence embedding techniques in clinical semantic textual similarity (STS) settings. In the entity-centric setting that we have designed, MED-SE achieves significantly better performance, while the existing unsupervised methods including SimCSE show degraded performance. Our experiments elucidate the inherent discrepancies between the general- and clinical-domain texts, and suggest that entity-centric contrastive approaches may help bridge this gap and lead to a better representation of clinical sentences.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.