Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterative Minimax Games with Coupled Linear Constraints (2212.04672v5)

Published 9 Dec 2022 in math.OC, cs.LG, and stat.ML

Abstract: The study of nonconvex minimax games has gained significant momentum in machine learning and decision science communities due to their fundamental connections to adversarial training scenarios. This work develops a primal-dual alternating proximal gradient (PDAPG) algorithm framework for resolving iterative minimax games featuring nonsmooth nonconvex objectives subject to coupled linear constraints. We establish rigorous convergence guarantees for both nonconvex-strongly concave and nonconvex-concave game configurations, demonstrating that PDAPG achieves an $\varepsilon$-stationary solution within $\mathcal{O}\left( \varepsilon {-2} \right)$ iterations for strongly concave settings and $\mathcal{O}\left( \varepsilon {-4} \right)$ iterations for concave scenarios. Our analysis provides the first known iteration complexity bounds for this class of constrained minimax games, particularly addressing the critical challenge of coupled linear constraints that induce inherent interdependencies among strategy variables. The proposed game-theoretic framework advances existing solution methodologies by simultaneously handling nonsmooth components and coordinated constraint structures through alternating primal-dual updates.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets