Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Wasserstein Distributionally Robust Control of Partially Observable Linear Stochastic Systems (2212.04644v2)

Published 9 Dec 2022 in eess.SY, cs.SY, and math.OC

Abstract: Distributionally robust control (DRC) aims to effectively manage distributional ambiguity in stochastic systems. While most existing works address inaccurate distributional information in fully observable settings, we consider a partially observable DRC problem for discrete-time linear systems using the Wasserstein metric. For a tractable solution, we propose a novel approximation method exploiting the Gelbrich bound of Wasserstein distance. Using techniques from modern distributionally robust optimization, we derive a closed-form expression for the optimal control policy and a tractable semidefinite programming problem for the worst-case distribution policy in both finite-horizon and infinite-horizon average-cost settings. The proposed method features several salient theoretical properties, such as a guaranteed cost property and a probabilistic out-of-sample performance guarantee, demonstrating the distributional robustness of our controller. Furthermore, the resulting controller is shown to ensure the closed-loop stability of the mean-state system. The empirical performance of our method is tested through numerical experiments on a power system frequency control problem.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube