Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Compiler Optimization for Quantum Computing Using Reinforcement Learning (2212.04508v2)

Published 8 Dec 2022 in quant-ph, cs.ET, and cs.LG

Abstract: Any quantum computing application, once encoded as a quantum circuit, must be compiled before being executable on a quantum computer. Similar to classical compilation, quantum compilation is a sequential process with many compilation steps and numerous possible optimization passes. Despite the similarities, the development of compilers for quantum computing is still in its infancy -- lacking mutual consolidation on the best sequence of passes, compatibility, adaptability, and flexibility. In this work, we take advantage of decades of classical compiler optimization and propose a reinforcement learning framework for developing optimized quantum circuit compilation flows. Through distinct constraints and a unifying interface, the framework supports the combination of techniques from different compilers and optimization tools in a single compilation flow. Experimental evaluations show that the proposed framework -- set up with a selection of compilation passes from IBM's Qiskit and Quantinuum's TKET -- significantly outperforms both individual compilers in 73% of cases regarding the expected fidelity. The framework is available on GitHub (https://github.com/cda-tum/MQTPredictor) as part of the Munich Quantum Toolkit (MQT).

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.