Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Domain Invariant Prompt for Vision-Language Models (2212.04196v2)

Published 8 Dec 2022 in cs.CV

Abstract: Prompt learning is one of the most effective and trending ways to adapt powerful vision-language foundation models like CLIP to downstream datasets by tuning learnable prompt vectors with very few samples. However, although prompt learning achieves excellent performance over in-domain data, it still faces the major challenge of generalizing to unseen classes and domains. Some existing prompt learning methods tackle this issue by adaptively generating different prompts for different tokens or domains but neglecting the ability of learned prompts to generalize to unseen domains. In this paper, we propose a novel prompt learning paradigm that directly generates \emph{domain invariant} prompt that can be generalized to unseen domains, called MetaPrompt. Specifically, a dual-modality prompt tuning network is proposed to generate prompts for input from both image and text modalities. With a novel asymmetric contrastive loss, the representation from the original pre-trained vision-LLM acts as supervision to enhance the generalization ability of the learned prompt. More importantly, we propose a meta-learning-based prompt tuning algorithm that explicitly constrains the task-specific prompt tuned for one domain or class to also achieve good performance in another domain or class. Extensive experiments on 11 datasets for base-to-new generalization and 4 datasets for domain generalization demonstrate that our method consistently and significantly outperforms existing methods.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.