Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Reducing Collision Risk in Multi-Agent Path Planning: Application to Air traffic Management (2212.04122v2)

Published 8 Dec 2022 in cs.MA and cs.GT

Abstract: To minimize collision risks in the multi-agent path planning problem with stochastic transition dynamics, we formulate a Markov decision process congestion game with a multi-linear congestion cost. Players within the game complete individual tasks while minimizing their own collision risks. We show that the set of Nash equilibria coincides with the first-order KKT points of a non-convex optimization problem. Our game is applied to a historical flight plan over France to reduce collision risks between commercial aircraft.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.