Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reducing Collision Risk in Multi-Agent Path Planning: Application to Air traffic Management (2212.04122v2)

Published 8 Dec 2022 in cs.MA and cs.GT

Abstract: To minimize collision risks in the multi-agent path planning problem with stochastic transition dynamics, we formulate a Markov decision process congestion game with a multi-linear congestion cost. Players within the game complete individual tasks while minimizing their own collision risks. We show that the set of Nash equilibria coincides with the first-order KKT points of a non-convex optimization problem. Our game is applied to a historical flight plan over France to reduce collision risks between commercial aircraft.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.