Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Analysis of Drug repurposing Knowledge graphs for Covid-19 (2212.03911v1)

Published 7 Dec 2022 in cs.AI and cs.LG

Abstract: Knowledge graph (KG) is used to represent data in terms of entities and structural relations between the entities. This representation can be used to solve complex problems such as recommendation systems and question answering. In this study, a set of candidate drugs for COVID-19 are proposed by using Drug repurposing knowledge graph (DRKG). DRKG is a biological knowledge graph constructed using a vast amount of open source biomedical knowledge to understand the mechanism of compounds and the related biological functions. Node and relation embeddings are learned using knowledge graph embedding models and neural network and attention related models. Different models are used to get the node embedding by changing the objective of the model. These embeddings are later used to predict if a candidate drug is effective to treat a disease or how likely it is for a drug to bind to a protein associated to a disease which can be modelled as a link prediction task between two nodes. RESCAL performed the best on the test dataset in terms of MR, MRR and Hits@3.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)