Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A socio-physics based hybrid metaheuristic for solving complex non-convex constrained optimization problems (2212.03711v1)

Published 2 Sep 2022 in math.OC, cs.AI, and cs.NE

Abstract: Several Artificial Intelligence based heuristic and metaheuristic algorithms have been developed so far. These algorithms have shown their superiority towards solving complex problems from different domains. However, it is necessary to critically validate these algorithms for solving real-world constrained optimization problems. The search behavior in those problems is different as it involves large number of linear, nonlinear and non-convex type equality and inequality constraints. In this work a 57 real-world constrained optimization problems test suite is solved using two constrained metaheuristic algorithms originated from a socio-based Cohort Intelligence (CI) algorithm. The first CI-based algorithm incorporates a self-adaptive penalty function approach i.e., CI-SAPF. The second algorithm combines CI-SAPF with the intrinsic properties of the physics-based Colliding Bodies Optimization (CBO) referred to CI-SAPF-CBO. The results obtained from CI-SAPF and CI-SAPF-CBO are compared with other constrained optimization algorithms. The superiority of the proposed algorithms is discussed in details followed by future directions to evolve the constrained handling techniques.

Summary

We haven't generated a summary for this paper yet.