Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

First Go, then Post-Explore: the Benefits of Post-Exploration in Intrinsic Motivation (2212.03251v2)

Published 6 Dec 2022 in cs.LG, cs.AI, and cs.RO

Abstract: Go-Explore achieved breakthrough performance on challenging reinforcement learning (RL) tasks with sparse rewards. The key insight of Go-Explore was that successful exploration requires an agent to first return to an interesting state ('Go'), and only then explore into unknown terrain ('Explore'). We refer to such exploration after a goal is reached as 'post-exploration'. In this paper, we present a clear ablation study of post-exploration in a general intrinsically motivated goal exploration process (IMGEP) framework, that the Go-Explore paper did not show. We study the isolated potential of post-exploration, by turning it on and off within the same algorithm under both tabular and deep RL settings on both discrete navigation and continuous control tasks. Experiments on a range of MiniGrid and Mujoco environments show that post-exploration indeed helps IMGEP agents reach more diverse states and boosts their performance. In short, our work suggests that RL researchers should consider to use post-exploration in IMGEP when possible since it is effective, method-agnostic and easy to implement.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.