Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DisTRaC: Accelerating High Performance Compute Processing for Temporary Data Storage (2212.03054v1)

Published 6 Dec 2022 in cs.DC and cs.OS

Abstract: High Performance Compute (HPC) clusters often produce intermediate files as part of code execution and message passing is not always possible to supply data to these cluster jobs. In these cases, I/O goes back to central distributed storage to allow cross node data sharing. These systems are often high performance and characterised by their high cost per TB and sensitivity to workload type such as being tuned to small or large file I/O. However, compute nodes often have large amounts of RAM, so when dealing with intermediate files where longevity or reliability of the system is not as important, local RAM disks can be used to obtain performance benefits. In this paper we show how this problem was tackled by creating a RAM block that could interact with the object storage system Ceph, as well as creating a deployment tool to deploy Ceph on HPC infrastructure effectively. This work resulted in a system that was more performant than the central high performance distributed storage system used at Diamond reducing I/O overhead and processing time for Savu, a tomography data processing application, by 81.04% and 8.32% respectively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.