Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Improved Algebraic Degeneracy Testing (2212.03030v1)

Published 6 Dec 2022 in cs.CG and cs.DS

Abstract: In the classical linear degeneracy testing problem, we are given $n$ real numbers and a $k$-variate linear polynomial $F$, for some constant $k$, and have to determine whether there exist $k$ numbers $a_1,\ldots,a_k$ from the set such that $F(a_1,\ldots,a_k) = 0$. We consider a generalization of this problem in which $F$ is an arbitrary constant-degree polynomial, we are given $k$ sets of $n$ numbers, and have to determine whether there exist a $k$-tuple of numbers, one in each set, on which $F$ vanishes. We give the first improvement over the na\"ive $O*(n{k-1})$ algorithm for this problem (where the $O*(\cdot)$ notation omits subpolynomial factors). We show that the problem can be solved in time $O*\left( n{k - 2 + \frac 4{k+2}}\right)$ for even $k$ and in time $O*\left( n{k - 2 + \frac{4k-8}{k2-5}}\right)$ for odd $k$ in the real RAM model of computation. We also prove that for $k=4$, the problem can be solved in time $O*(n{2.625})$ in the algebraic decision tree model, and for $k=5$ it can be solved in time $O*(n{3.56})$ in the same model, both improving on the above uniform bounds. All our results rely on an algebraic generalization of the standard meet-in-the-middle algorithm for $k$-SUM, powered by recent algorithmic advances in the polynomial method for semi-algebraic range searching. In fact, our main technical result is much more broadly applicable, as it provides a general tool for detecting incidences and other interactions between points and algebraic surfaces in any dimension. In particular, it yields an efficient algorithm for a general, algebraic version of Hopcroft's point-line incidence detection problem in any dimension.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube