Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Visibility-Aware Navigation Among Movable Obstacles (2212.02671v1)

Published 6 Dec 2022 in cs.RO

Abstract: In this paper, we examine the problem of visibility-aware robot navigation among movable obstacles (VANAMO). A variant of the well-known NAMO robotic planning problem, VANAMO puts additional visibility constraints on robot motion and object movability. This new problem formulation lifts the restrictive assumption that the map is fully visible and the object positions are fully known. We provide a formal definition of the VANAMO problem and propose the Look and Manipulate Backchaining (LaMB) algorithm for solving such problems. LaMB has a simple vision-based API that makes it more easily transferable to real-world robot applications and scales to the large 3D environments. To evaluate LaMB, we construct a set of tasks that illustrate the complex interplay between visibility and object movability that can arise in mobile base manipulation problems in unknown environments. We show that LaMB outperforms NAMO and visibility-aware motion planning approaches as well as simple combinations of them on complex manipulation problems with partial observability.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.