Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Explaining Link Predictions in Knowledge Graph Embedding Models with Influential Examples (2212.02651v1)

Published 5 Dec 2022 in cs.LG

Abstract: We study the problem of explaining link predictions in the Knowledge Graph Embedding (KGE) models. We propose an example-based approach that exploits the latent space representation of nodes and edges in a knowledge graph to explain predictions. We evaluated the importance of identified triples by observing progressing degradation of model performance upon influential triples removal. Our experiments demonstrate that this approach to generate explanations outperforms baselines on KGE models for two publicly available datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.