Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

DARF: Depth-Aware Generalizable Neural Radiance Field (2212.02280v3)

Published 5 Dec 2022 in cs.CV

Abstract: Neural Radiance Field (NeRF) has revolutionized novel-view rendering tasks and achieved impressive results. However, the inefficient sampling and per-scene optimization hinder its wide applications. Though some generalizable NeRFs have been proposed, the rendering quality is unsatisfactory due to the lack of geometry and scene uniqueness. To address these issues, we propose the Depth-Aware Generalizable Neural Radiance Field (DARF) with a Depth-Aware Dynamic Sampling (DADS) strategy to perform efficient novel view rendering and unsupervised depth estimation on unseen scenes without per-scene optimization. Distinct from most existing generalizable NeRFs, our framework infers the unseen scenes on both pixel level and geometry level with only a few input images. By introducing a pre-trained depth estimation module to derive the depth prior, narrowing down the ray sampling interval to the proximity space of the estimated surface, and sampling in expectation maximum position, we preserve scene characteristics while learning common attributes for novel-view synthesis. Moreover, we introduce a Multi-level Semantic Consistency loss (MSC) to assist with more informative representation learning. Extensive experiments on indoor and outdoor datasets show that compared with state-of-the-art generalizable NeRF methods, DARF reduces samples by 50%, while improving rendering quality and depth estimation. Our code is available on https://github.com/shiyue001/GARF.git.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.