Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Differentiated Federated Reinforcement Learning Based Traffic Offloading on Space-Air-Ground Integrated Networks (2212.02075v4)

Published 5 Dec 2022 in cs.NI and cs.LG

Abstract: The Space-Air-Ground Integrated Network (SAGIN) plays a pivotal role as a comprehensive foundational network communication infrastructure, presenting opportunities for highly efficient global data transmission. Nonetheless, given SAGIN's unique characteristics as a dynamically heterogeneous network, conventional network optimization methodologies encounter challenges in satisfying the stringent requirements for network latency and stability inherent to data transmission within this network environment. Therefore, this paper proposes the use of differentiated federated reinforcement learning (DFRL) to solve the traffic offloading problem in SAGIN, i.e., using multiple agents to generate differentiated traffic offloading policies. Considering the differentiated characteristics of each region of SAGIN, DFRL models the traffic offloading policy optimization process as the process of solving the Decentralized Partially Observable Markov Decision Process (DEC-POMDP) problem. The paper proposes a novel Differentiated Federated Soft Actor-Critic (DFSAC) algorithm to solve the problem. The DFSAC algorithm takes the network packet delay as the joint reward value and introduces the global trend model as the joint target action-value function of each agent to guide the update of each agent's policy. The simulation results demonstrate that the traffic offloading policy based on the DFSAC algorithm achieves better performance in terms of network throughput, packet loss rate, and packet delay compared to the traditional federated reinforcement learning approach and other baseline approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.