Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Understanding How Model Size Affects Few-shot Instruction Prompting (2212.01907v1)

Published 4 Dec 2022 in cs.CL, cs.LG, and stat.ML

Abstract: LLMs are affected by the phenomena of memorizing and forgetting their training data. But how do these vary by model size? We work towards this question by investigating how the model size affects the model's ability to discriminate a word's meaning in a given context. We introduce a dataset called DeltaWords, which evaluates a model's ability to follow instructions to select a sentence which replaces the target word with its antonym. We show a weak inverse scaling trend, where task accuracy degrades as model size increase, under extremely few-shot prompting regimes. We show that increasing the number of examples tend to disproportionately benefit larger models than smaller models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.