Papers
Topics
Authors
Recent
2000 character limit reached

Graph Representation Learning for Wireless Communications (2212.01904v1)

Published 4 Dec 2022 in cs.IT and math.IT

Abstract: Wireless networks are inherently graph-structured, which can be utilized in graph representation learning to solve complex wireless network optimization problems. In graph representation learning, feature vectors for each entity in the network are calculated such that they capture spatial and temporal dependencies in their local and global neighbourhoods. Graph neural networks (GNNs) are powerful tools to solve these complex problems because of their expressive representation and reasoning power. In this paper, the potential of graph representation learning and GNNs in wireless networks is presented. An overview of graph learning is provided which covers the fundamentals and concepts such as feature design over graphs, GNNs, and their design principles. Potential of graph representation learning in wireless networks is presented via few exemplary use cases and some initial results on the GNN-based access point selection for cell-free massive MIMO systems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.