Clustering Permutations: New Techniques with Streaming Applications (2212.01821v1)
Abstract: We study the classical metric $k$-median clustering problem over a set of input rankings (i.e., permutations), which has myriad applications, from social-choice theory to web search and databases. A folklore algorithm provides a $2$-approximate solution in polynomial time for all $k=O(1)$, and works irrespective of the underlying distance measure, so long it is a metric; however, going below the $2$-factor is a notorious challenge. We consider the Ulam distance, a variant of the well-known edit-distance metric, where strings are restricted to be permutations. For this metric, Chakraborty, Das, and Krauthgamer [SODA, 2021] provided a $(2-\delta)$-approximation algorithm for $k=1$, where $\delta\approx 2{-40}$. Our primary contribution is a new algorithmic framework for clustering a set of permutations. Our first result is a $1.999$-approximation algorithm for the metric $k$-median problem under the Ulam metric, that runs in time $(k \log (nd)){O(k)}n d3$ for an input consisting of $n$ permutations over $[d]$. In fact, our framework is powerful enough to extend this result to the streaming model (where the $n$ input permutations arrive one by one) using only polylogarithmic (in $n$) space. Additionally, we show that similar results can be obtained even in the presence of outliers, which is presumably a more difficult problem.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.