Classification by sparse generalized additive models (2212.01792v4)
Abstract: We consider (nonparametric) sparse (generalized) additive models (SpAM) for classification. The design of a SpAM classifier is based on minimizing the logistic loss with a sparse group Lasso/Slope-type penalties on the coefficients of univariate additive components' expansions in orthonormal series (e.g., Fourier or wavelets). The resulting classifier is inherently adaptive to the unknown sparsity and smoothness. We show that under certain sparse group restricted eigenvalue condition it is nearly-minimax (up to log-factors) simultaneously across the entire range of analytic, Sobolev and Besov classes. The performance of the proposed classifier is illustrated on a simulated and a real-data examples.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.