Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Classification by sparse generalized additive models (2212.01792v4)

Published 4 Dec 2022 in math.ST, cs.LG, stat.ME, and stat.TH

Abstract: We consider (nonparametric) sparse (generalized) additive models (SpAM) for classification. The design of a SpAM classifier is based on minimizing the logistic loss with a sparse group Lasso/Slope-type penalties on the coefficients of univariate additive components' expansions in orthonormal series (e.g., Fourier or wavelets). The resulting classifier is inherently adaptive to the unknown sparsity and smoothness. We show that under certain sparse group restricted eigenvalue condition it is nearly-minimax (up to log-factors) simultaneously across the entire range of analytic, Sobolev and Besov classes. The performance of the proposed classifier is illustrated on a simulated and a real-data examples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube