Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving End-to-end Speech Translation by Leveraging Auxiliary Speech and Text Data (2212.01778v1)

Published 4 Dec 2022 in eess.AS, cs.AI, cs.CL, and cs.SD

Abstract: We present a method for introducing a text encoder into pre-trained end-to-end speech translation systems. It enhances the ability of adapting one modality (i.e., source-language speech) to another (i.e., source-language text). Thus, the speech translation model can learn from both unlabeled and labeled data, especially when the source-language text data is abundant. Beyond this, we present a denoising method to build a robust text encoder that can deal with both normal and noisy text data. Our system sets new state-of-the-arts on the MuST-C En-De, En-Fr, and LibriSpeech En-Fr tasks.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.