Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Injecting Spatial Information for Monaural Speech Enhancement via Knowledge Distillation (2212.01012v1)

Published 2 Dec 2022 in eess.AS and cs.SD

Abstract: Monaural speech enhancement (SE) provides a versatile and cost-effective approach to SE tasks by utilizing recordings from a single microphone. However, the monaural SE lags performance behind multi-channel SE as the monaural SE methods are unable to extract spatial information from one-channel recordings, which greatly limits their application scenarios. To address this issue, we inject spatial information into the monaural SE model and propose a knowledge distillation strategy to enable the monaural SE model to learn binaural speech features from the binaural SE model, which makes monaural SE model possible to reconstruct higher intelligibility and quality enhanced speeches under low signal-to-noise ratio (SNR) conditions. Extensive experiments show that our proposed monaural SE model by injecting spatial information via knowledge distillation achieves favorable performance against other monaural SE models with fewer parameters.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xinmeng Xu (17 papers)
  2. Weiping Tu (17 papers)
  3. Yuhong Yang (54 papers)

Summary

We haven't generated a summary for this paper yet.