Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Graph Quality Evaluation under Incomplete Information (2212.00994v3)

Published 2 Dec 2022 in cs.AI

Abstract: Knowledge graphs (KGs) have attracted more and more attentions because of their fundamental roles in many tasks. Quality evaluation for KGs is thus crucial and indispensable. Existing methods in this field evaluate KGs by either proposing new quality metrics from different dimensions or measuring performances at KG construction stages. However, there are two major issues with those methods. First, they highly rely on raw data in KGs, which makes KGs' internal information exposed during quality evaluation. Second, they consider more about the quality at data level instead of ability level, where the latter one is more important for downstream applications. To address these issues, we propose a knowledge graph quality evaluation framework under incomplete information (QEII). The quality evaluation task is transformed into an adversarial Q&A game between two KGs. Winner of the game is thus considered to have better qualities. During the evaluation process, no raw data is exposed, which ensures information protection. Experimental results on four pairs of KGs demonstrate that, compared with baselines, the QEII implements a reasonable quality evaluation at ability level under incomplete information.

Summary

We haven't generated a summary for this paper yet.