Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fair Generative Models via Transfer Learning (2212.00926v1)

Published 2 Dec 2022 in cs.LG and cs.CY

Abstract: This work addresses fair generative models. Dataset biases have been a major cause of unfairness in deep generative models. Previous work had proposed to augment large, biased datasets with small, unbiased reference datasets. Under this setup, a weakly-supervised approach has been proposed, which achieves state-of-the-art quality and fairness in generated samples. In our work, based on this setup, we propose a simple yet effective approach. Specifically, first, we propose fairTL, a transfer learning approach to learn fair generative models. Under fairTL, we pre-train the generative model with the available large, biased datasets and subsequently adapt the model using the small, unbiased reference dataset. We find that our fairTL can learn expressive sample generation during pre-training, thanks to the large (biased) dataset. This knowledge is then transferred to the target model during adaptation, which also learns to capture the underlying fair distribution of the small reference dataset. Second, we propose fairTL++, where we introduce two additional innovations to improve upon fairTL: (i) multiple feedback and (ii) Linear-Probing followed by Fine-Tuning (LP-FT). Taking one step further, we consider an alternative, challenging setup when only a pre-trained (potentially biased) model is available but the dataset that was used to pre-train the model is inaccessible. We demonstrate that our proposed fairTL and fairTL++ remain very effective under this setup. We note that previous work requires access to the large, biased datasets and is incapable of handling this more challenging setup. Extensive experiments show that fairTL and fairTL++ achieve state-of-the-art in both quality and fairness of generated samples. The code and additional resources can be found at bearwithchris.github.io/fairTL/.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.