Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task Environments (2212.00906v1)

Published 1 Dec 2022 in cs.RO and cs.AI

Abstract: In reinforcement learning (RL) research, simulations enable benchmarks between algorithms, as well as prototyping and hyper-parameter tuning of agents. In order to promote RL both in research and real-world applications, frameworks are required which are on the one hand efficient in terms of running experiments as fast as possible. On the other hand, they must be flexible enough to allow the integration of newly developed optimization techniques, e.g. new RL algorithms, which are continuously put forward by an active research community. In this paper, we introduce Karolos, a RL framework developed for robotic applications, with a particular focus on transfer scenarios with varying robot-task combinations reflected in a modular environment architecture. In addition, we provide implementations of state-of-the-art RL algorithms along with common learning-facilitating enhancements, as well as an architecture to parallelize environments across multiple processes to significantly speed up experiments. The code is open source and published on GitHub with the aim of promoting research of RL applications in robotics.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.