Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Multi-Class Segmentation from Aerial Views using Recursive Noise Diffusion (2212.00787v3)

Published 1 Dec 2022 in cs.CV

Abstract: Semantic segmentation from aerial views is a crucial task for autonomous drones, as they rely on precise and accurate segmentation to navigate safely and efficiently. However, aerial images present unique challenges such as diverse viewpoints, extreme scale variations, and high scene complexity. In this paper, we propose an end-to-end multi-class semantic segmentation diffusion model that addresses these challenges. We introduce recursive denoising to allow information to propagate through the denoising process, as well as a hierarchical multi-scale approach that complements the diffusion process. Our method achieves promising results on the UAVid dataset and state-of-the-art performance on the Vaihingen Building segmentation benchmark. Being the first iteration of this method, it shows great promise for future improvements.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.