Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Using Gradient to Boost the Generalization Performance of Deep Learning Models for Fluid Dynamics (2212.00716v1)

Published 9 Oct 2022 in physics.flu-dyn, cs.LG, cs.NA, and math.NA

Abstract: Nowadays, Computational Fluid Dynamics (CFD) is a fundamental tool for industrial design. However, the computational cost of doing such simulations is expensive and can be detrimental for real-world use cases where many simulations are necessary, such as the task of shape optimization. Recently, Deep Learning (DL) has achieved a significant leap in a wide spectrum of applications and became a good candidate for physical systems, opening perspectives to CFD. To circumvent the computational bottleneck of CFD, DL models have been used to learn on Euclidean data, and more recently, on non-Euclidean data such as unstuctured grids and manifolds, allowing much faster and more efficient (memory, hardware) surrogate models. Nevertheless, DL presents the intrinsic limitation of extrapolating (generalizing) out of training data distribution (design space). In this study, we present a novel work to increase the generalization capabilities of Deep Learning. To do so, we incorporate the physical gradients (derivatives of the outputs w.r.t. the inputs) to the DL models. Our strategy has shown good results towards a better generalization of DL networks and our methodological/ theoretical study is corroborated with empirical validation, including an ablation study.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.