Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

TCN-CUTIE: A 1036 TOp/s/W, 2.72 uJ/Inference, 12.2 mW All-Digital Ternary Accelerator in 22 nm FDX Technology (2212.00688v1)

Published 1 Dec 2022 in cs.AR

Abstract: Tiny Machine Learning (TinyML) applications impose uJ/Inference constraints, with a maximum power consumption of tens of mW. It is extremely challenging to meet these requirements at a reasonable accuracy level. This work addresses the challenge with a flexible, fully digital Ternary Neural Network (TNN) accelerator in a RISC-V-based System-on-Chip (SoC). Besides supporting Ternary Convolutional Neural Networks, we introduce extensions to the accelerator design that enable the processing of time-dilated Temporal Convolutional Neural Networks (TCNs). The design achieves 5.5 uJ/Inference, 12.2 mW, 8000 Inferences/sec at 0.5 V for a Dynamic Vision Sensor (DVS) based TCN, and an accuracy of 94.5 % and 2.72 uJ/Inference, 12.2 mW, 3200 Inferences/sec at 0.5 V for a non-trivial 9-layer, 96 channels-per-layer convolutional network with CIFAR-10 accuracy of 86 %. The peak energy efficiency is 1036 TOp/s/W, outperforming the state-of-the-art silicon-proven TinyML quantized accelerators by 1.67x while achieving competitive accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.