Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Predictive Control with Learning-Based Terminal Costs Using Approximate Value Iteration (2212.00361v1)

Published 1 Dec 2022 in eess.SY, cs.SY, and math.OC

Abstract: Stability under model predictive control (MPC) schemes is frequently ensured by terminal ingredients. Employing a (control) Lyapunov function as the terminal cost constitutes a common choice. Learning-based methods may be used to construct the terminal cost by relating it to, for instance, an infinite-horizon optimal control problem in which the optimal cost is a Lyapunov function. Value iteration, an approximate dynamic programming (ADP) approach, refers to one particular cost approximation technique. In this work, we merge the results of terminally unconstrained predictive control and approximate value iteration to draw benefits from both fields. A prediction horizon is derived in dependence on different factors such as approximation-related errors to render the closed-loop asymptotically stable further allowing a suboptimality estimate in comparison to an infinite horizon optimal cost. The result extends recent studies on predictive control with ADP-based terminal costs, not requiring a local initial stabilizing controller. We compare this controller in simulation with other terminal cost options to show that the proposed approach leads to a shorter minimal horizon in comparison to previous results.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.