Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

LQG for Constrained Linear Systems: Indirect Feedback Stochastic MPC with Kalman Filtering (2212.00351v2)

Published 1 Dec 2022 in eess.SY, cs.SY, and math.OC

Abstract: We present an output feedback stochastic model predictive control (SMPC) approach for linear systems subject to Gaussian disturbances and measurement noise and probabilistic constraints on system states and inputs. The presented approach combines a linear Kalman filter for state estimation with an indirect feedback SMPC, which is initialized with a predicted nominal state, while feedback of the current state estimate enters through the objective of the SMPC problem. For this combination, we establish recursive feasibility of the SMPC problem due to the chosen initialization, and closed-loop chance constraint satisfaction thanks to an appropriate tightening of the constraints in the SMPC problem also considering the state estimation uncertainty. Additionally, we show that for specific design choices in the SMPC problem, the unconstrained linear-quadratic-Gaussian (LQG) solution is recovered if it is feasible for a given initial condition and the considered constraints. We demonstrate this fact for a numerical example, and show that the resulting output feedback controller can provide non-conservative constraint satisfaction.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube