Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Split Learning without Local Weight Sharing to Enhance Client-side Data Privacy (2212.00250v3)

Published 1 Dec 2022 in cs.CR and cs.DC

Abstract: Split learning (SL) aims to protect user data privacy by distributing deep models between client-server and keeping private data locally. In SL training with multiple clients, the local model weights are shared among the clients for local model update. This paper first reveals data privacy leakage exacerbated from local weight sharing among the clients in SL through model inversion attacks. Then, to reduce the data privacy leakage issue, we propose and analyze privacy-enhanced SL (P-SL) (or SL without local weight sharing). We further propose parallelized P-SL to expedite the training process by duplicating multiple server-side model instances without compromising accuracy. Finally, we explore P-SL with late participating clients and devise a server-side cache-based training method to address the forgetting phenomenon in SL when late clients join. Experimental results demonstrate that P-SL helps reduce up to 50% of client-side data leakage, which essentially achieves a better privacy-accuracy trade-off than the current trend by using differential privacy mechanisms. Moreover, P-SL and its cache-based version achieve comparable accuracy to baseline SL under various data distributions, while cost less computation and communication. Additionally, caching-based training in P-SL mitigates the negative effect of forgetting, stabilizes the learning, and enables practical and low-complexity training in a dynamic environment with late-arriving clients.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: