Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Split Learning without Local Weight Sharing to Enhance Client-side Data Privacy (2212.00250v3)

Published 1 Dec 2022 in cs.CR and cs.DC

Abstract: Split learning (SL) aims to protect user data privacy by distributing deep models between client-server and keeping private data locally. In SL training with multiple clients, the local model weights are shared among the clients for local model update. This paper first reveals data privacy leakage exacerbated from local weight sharing among the clients in SL through model inversion attacks. Then, to reduce the data privacy leakage issue, we propose and analyze privacy-enhanced SL (P-SL) (or SL without local weight sharing). We further propose parallelized P-SL to expedite the training process by duplicating multiple server-side model instances without compromising accuracy. Finally, we explore P-SL with late participating clients and devise a server-side cache-based training method to address the forgetting phenomenon in SL when late clients join. Experimental results demonstrate that P-SL helps reduce up to 50% of client-side data leakage, which essentially achieves a better privacy-accuracy trade-off than the current trend by using differential privacy mechanisms. Moreover, P-SL and its cache-based version achieve comparable accuracy to baseline SL under various data distributions, while cost less computation and communication. Additionally, caching-based training in P-SL mitigates the negative effect of forgetting, stabilizes the learning, and enables practical and low-complexity training in a dynamic environment with late-arriving clients.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com