Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

BEVUDA: Multi-geometric Space Alignments for Domain Adaptive BEV 3D Object Detection (2211.17126v2)

Published 30 Nov 2022 in cs.CV

Abstract: Vision-centric bird-eye-view (BEV) perception has shown promising potential in autonomous driving. Recent works mainly focus on improving efficiency or accuracy but neglect the challenges when facing environment changing, resulting in severe degradation of transfer performance. For BEV perception, we figure out the significant domain gaps existing in typical real-world cross-domain scenarios and comprehensively solve the Domain Adaption (DA) problem for multi-view 3D object detection. Since BEV perception approaches are complicated and contain several components, the domain shift accumulation on multiple geometric spaces (i.e., 2D, 3D Voxel, BEV) makes BEV DA even challenging. In this paper, we propose a Multi-space Alignment Teacher-Student (MATS) framework to ease the domain shift accumulation, which consists of a Depth-Aware Teacher (DAT) and a Geometric-space Aligned Student (GAS) model. DAT tactfully combines target lidar and reliable depth prediction to construct depth-aware information, extracting target domain-specific knowledge in Voxel and BEV feature spaces. It then transfers the sufficient domain knowledge of multiple spaces to the student model. In order to jointly alleviate the domain shift, GAS projects multi-geometric space features to a shared geometric embedding space and decreases data distribution distance between two domains. To verify the effectiveness of our method, we conduct BEV 3D object detection experiments on three cross-domain scenarios and achieve state-of-the-art performance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube