Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A proposal for leaky integrate-and-fire neurons by domain walls in antiferromagnetic insulators (2211.16845v2)

Published 30 Nov 2022 in cond-mat.dis-nn, cond-mat.mes-hall, cond-mat.mtrl-sci, and cs.ET

Abstract: Brain-inspired neuromorphic computing is a promising path towards next generation analogue computers that are fundamentally different compared to the conventional von Neumann architecture. One model for neuromorphic computing that can mimic the human brain behavior are spiking neural networks (SNNs), of which one of the most successful is the leaky integrate-and-fire (LIF) model. Since conventional complementary metal-oxide-semiconductor (CMOS) devices are not meant for modelling neural networks and are energy inefficient in network applications, recently the focus shifted towards spintronic-based neural networks. In this work, using the advantage of antiferromagnetic insulators, we propose a non-volatile magnonic neuron that could be the building block of a LIF spiking neuronal network. In our proposal, an antiferromagnetic domain wall in the presence of a magnetic anisotropy gradient mimics a biological neuron with leaky, integrating, and firing properties. This single neuron is controlled by polarized antiferromagnetic magnons, activated by either a magnetic field pulse or a spin transfer torque mechanism, and has properties similar to biological neurons, namely latency, refraction, bursting and inhibition. We argue that this proposed single neuron, based on antiferromagnetic domain walls, is faster and has more functionalities compared to previously proposed neurons based on ferromagnetic systems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.