Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Domain Mismatch Doesn't Always Prevent Cross-Lingual Transfer Learning (2211.16671v1)

Published 30 Nov 2022 in cs.CL

Abstract: Cross-lingual transfer learning without labeled target language data or parallel text has been surprisingly effective in zero-shot cross-lingual classification, question answering, unsupervised machine translation, etc. However, some recent publications have claimed that domain mismatch prevents cross-lingual transfer, and their results show that unsupervised bilingual lexicon induction (UBLI) and unsupervised neural machine translation (UNMT) do not work well when the underlying monolingual corpora come from different domains (e.g., French text from Wikipedia but English text from UN proceedings). In this work, we show that a simple initialization regimen can overcome much of the effect of domain mismatch in cross-lingual transfer. We pre-train word and contextual embeddings on the concatenated domain-mismatched corpora, and use these as initializations for three tasks: MUSE UBLI, UN Parallel UNMT, and the SemEval 2017 cross-lingual word similarity task. In all cases, our results challenge the conclusions of prior work by showing that proper initialization can recover a large portion of the losses incurred by domain mismatch.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.