Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximating binary longest common subsequence in almost-linear time (2211.16660v2)

Published 30 Nov 2022 in cs.DS, cs.DM, and math.CO

Abstract: The Longest Common Subsequence (LCS) is a fundamental string similarity measure, and computing the LCS of two strings is a classic algorithms question. A textbook dynamic programming algorithm gives an exact algorithm in quadratic time, and this is essentially best possible under plausible fine-grained complexity assumptions, so a natural problem is to find faster approximation algorithms. When the inputs are two binary strings, there is a simple $\frac{1}{2}$-approximation in linear time: compute the longest common all-0s or all-1s subsequence. It has been open whether a better approximation is possible even in truly subquadratic time. Rubinstein and Song showed that the answer is yes under the assumption that the two input strings have equal lengths. We settle the question, generalizing their result to unequal length strings, proving that, for any $\varepsilon>0$, there exists $\delta>0$ and a $(\frac{1}{2}+\delta)$-approximation algorithm for binary LCS that runs in $n{1+\varepsilon}$ time. As a consequence of our result and a result of Akmal and Vassilevska-Williams, for any $\varepsilon>0$, there exists a $(\frac{1}{q}+\delta)$-approximation for LCS over $q$-ary strings in $n{1+\varepsilon}$ time. Our techniques build on the recent work of Guruswami, He, and Li who proved new bounds for error-correcting codes tolerating deletion errors. They prove a combinatorial "structure lemma" for strings which classifies them according to their oscillation patterns. We prove and use an algorithmic generalization of this structure lemma, which may be of independent interest.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube