Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Estimating the minimizer and the minimum value of a regression function under passive design (2211.16457v2)

Published 29 Nov 2022 in math.ST, stat.ML, and stat.TH

Abstract: We propose a new method for estimating the minimizer $\boldsymbol{x}*$ and the minimum value $f*$ of a smooth and strongly convex regression function $f$ from the observations contaminated by random noise. Our estimator $\boldsymbol{z}_n$ of the minimizer $\boldsymbol{x}*$ is based on a version of the projected gradient descent with the gradient estimated by a regularized local polynomial algorithm. Next, we propose a two-stage procedure for estimation of the minimum value $f*$ of regression function $f$. At the first stage, we construct an accurate enough estimator of $\boldsymbol{x}*$, which can be, for example, $\boldsymbol{z}_n$. At the second stage, we estimate the function value at the point obtained in the first stage using a rate optimal nonparametric procedure. We derive non-asymptotic upper bounds for the quadratic risk and optimization error of $\boldsymbol{z}_n$, and for the risk of estimating $f*$. We establish minimax lower bounds showing that, under certain choice of parameters, the proposed algorithms achieve the minimax optimal rates of convergence on the class of smooth and strongly convex functions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Exploiting higher order smoothness in derivative-free optimization and continuous bandits. Advances in Neural Information Processing Systems, 33, 2020.
  2. Distributed zero-order optimization under adversarial noise. Advances in Neural Information Processing Systems, 34, 2021.
  3. Gradient-free optimization of highly smooth functions: improved analysis and a new algorithm. arXiv:2306.02159, 2023.
  4. Estimation of the global mode of a density: Minimaxity, adaptation, and computational complexity. Electronic Journal of Statistics, 16(1):2774–2795, 2022.
  5. Highly-smooth zero-th order online optimization. In Proc. 29th Annual Conference on Learning Theory, pages 1–27, 2016.
  6. Optimal two-stage procedures for estimating location and size of the maximum of a multivariate regression function. Ann. Statist., 40(6):2850–2876, 2012.
  7. Correction note: ”Optimal two-stage procedures for estimating location and size of the maximum of a multivariate regression function”. Ann. Statist., 49(1):612–613, 2021.
  8. Julius R Blum. Multidimensional stochastic approximation methods. The Annals of Mathematical Statistics, 25(4):737–744, 1954.
  9. Minimax rate of testing in sparse linear regression. Automation and Remote Control, 80:1817–1834, 2019.
  10. Hung Chen. Lower rate of convergence for locating a maximum of a function. The Annals of Statistics, 16(3):1330–1334, 1988.
  11. Herman Chernoff. Estimation of the mode. Annals of the Institute of Statistical Mathematics, 16(1):31–41, 1964.
  12. Tore Dalenius. The mode–a neglected statistical parameter. Journal of the Royal Statistical Society. Series A (General), 128(1):110–117, 1965.
  13. Optimal rates for k-nn density and mode estimation. Advances in Neural Information Processing Systems, 27, 2014.
  14. Jürgen Dippon. Accelerated randomized stochastic optimization. The Annals of Statistics, 31(4):1260–1281, 2003.
  15. Václav Dupač. O Kiefer-Wolfowitzově aproximační methodě. Časopis pro pěstování matematiky, 82(1):47–75, 1957.
  16. Vaclav Fabian. Stochastic approximation of minima with improved asymptotic speed. The Annals of Mathematical Statistics, 38(1):191–200, 1967.
  17. Nonparametric estimation of the location of a maximum in a response surface. Journal of Multivariate Analysis, 87(1):191–217, 2003.
  18. Ulf Grenander. Some direct estimates of the mode. The Annals of Mathematical Statistics, 36(1):131–138, 1965.
  19. Nonparametric sequential estimation of zeros and extrema of regression functions. IEEE transactions on information theory, 33(3):367–372, 1987.
  20. Statistical Estimation, Asymptotic Theory. Springer, New York, 1981.
  21. Estimation of the maximum value of a signal in gaussian white noise. Mat. Zametki, 32(4):746–750, 1982.
  22. Rafail Z. Khas’minskii. Lower bound for the risks of nonparametric estimates of the mode. Contributions to statistics, 23(4):91–97, 1979.
  23. Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, 23(3):462–466, 1952.
  24. Jussi Klemelä. Adaptive estimation of the mode of a multivariate density. Journal of Nonparametric Statistics, 17(1):83–105, 2005.
  25. Multikernel passive stochastic gradient algorithms and transfer learning. IEEE Trans. Automat. Control, 67:1792–1805, 2022.
  26. Oleg V. Lepski. On a problem of adaptive estimation in Gaussian white noise. Theory of Probability and its Applications, 35(3):454–466, 1991.
  27. Oleg V. Lepski. Estimation of the maximum of a nonparametric signal up to a constant. Theory of Probability and its Applications, 38(1):152–158, 1993.
  28. A companion for the Kiefer–Wolfowitz–Blum stochastic approximation algorithm. The Annals of Statistics, 35(4):1749–1772, 2007.
  29. Hans-Georg Müller. Kernel estimators of zeros and of location and size of extrema of regression functions. Scandinavian journal of statistics, 12(3):221–232, 1985.
  30. Hans-Georg Müller. Adaptive nonparametric peak estimation. The Annals of Statistics, 17(3):1053–1069, 1989.
  31. Passive stochastic approximation. Automation and Remote Control, 50:1563–1569, 1989.
  32. Optimal and robust algorithms of passive stochastic approximation. IEEE Transactions on Information Theory, 38(5):1577–1583, 1992.
  33. Emanuel Parzen. On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3):1065–1076, 1962.
  34. Optimal order of accuracy of search algorithms in stochastic optimization. Problems of Information Transmission, 26(2):45–53, 1990.
  35. Charles J. Stone. Optimal rates of convergence for nonparametric estimators. The Annals of Statistics, 8(6):1348–1360, 1980.
  36. Charles J Stone. Optimal global rates of convergence for nonparametric regression. The Annals of Statistics, 10(4):1040–1053, 1982.
  37. Alexandre B. Tsybakov. Robust reconstruction of functions by the local-approximation method. Problems of Information Transmission, 22(2):69–84, 1986.
  38. Alexandre B. Tsybakov. Recursive estimation of the mode of a multivariate distribution. Problems of Information Transmission, 26(1):31–37, 1990a.
  39. Alexandre B. Tsybakov. Locally-polynomial algorithms of passive stochastic approximation. Problems of Control and Information Theory, 19(3):181–195, 1990b.
  40. Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer, New York, 2009.
  41. Johannes Hendrik Venter. On estimation of the mode. The Annals of Mathematical Statistics, 38(5):1446–1455, 1967.
  42. Optimization of smooth functions with noisy observations: Local minimax rates. Advances in Neural Information Processing Systems, 31, 2018.
  43. Bayesian mode and maximum estimation and accelerated rates of contraction. Bernoulli, 25(3):2330–2358, 2019.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.