Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mirror descent of Hopfield model (2211.15880v2)

Published 29 Nov 2022 in cs.LG and math.OC

Abstract: Mirror descent is an elegant optimization technique that leverages a dual space of parametric models to perform gradient descent. While originally developed for convex optimization, it has increasingly been applied in the field of machine learning. In this study, we propose a novel approach for utilizing mirror descent to initialize the parameters of neural networks. Specifically, we demonstrate that by using the Hopfield model as a prototype for neural networks, mirror descent can effectively train the model with significantly improved performance compared to traditional gradient descent methods that rely on random parameter initialization. Our findings highlight the potential of mirror descent as a promising initialization technique for enhancing the optimization of machine learning models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube