Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Data Poisoning Attack Aiming the Vulnerability of Continual Learning (2211.15875v2)

Published 29 Nov 2022 in cs.LG, cs.CR, and cs.CV

Abstract: Generally, regularization-based continual learning models limit access to the previous task data to imitate the real-world constraints related to memory and privacy. However, this introduces a problem in these models by not being able to track the performance on each task. In essence, current continual learning methods are susceptible to attacks on previous tasks. We demonstrate the vulnerability of regularization-based continual learning methods by presenting a simple task-specific data poisoning attack that can be used in the learning process of a new task. Training data generated by the proposed attack causes performance degradation on a specific task targeted by the attacker. We experiment with the attack on the two representative regularization-based continual learning methods, Elastic Weight Consolidation (EWC) and Synaptic Intelligence (SI), trained with variants of MNIST dataset. The experiment results justify the vulnerability proposed in this paper and demonstrate the importance of developing continual learning models that are robust to adversarial attacks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.