Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

How Important are Good Method Names in Neural Code Generation? A Model Robustness Perspective (2211.15844v2)

Published 29 Nov 2022 in cs.SE

Abstract: Pre-trained code generation models (PCGMs) have been widely applied in neural code generation which can generate executable code from functional descriptions in natural languages, possibly together with signatures. Despite substantial performance improvement of PCGMs, the role of method names in neural code generation has not been thoroughly investigated. In this paper, we study and demonstrate the potential of benefiting from method names to enhance the performance of PCGMs, from a model robustness perspective. Specifically, we propose a novel approach, named RADAR (neuRAl coDe generAtor Robustifier). RADAR consists of two components: RADAR-Attack and RADAR-Defense. The former attacks a PCGM by generating adversarial method names as part of the input, which are semantic and visual similar to the original input, but may trick the PCGM to generate completely unrelated code snippets. As a countermeasure to such attacks, RADAR-Defense synthesizes a new method name from the functional description and supplies it to the PCGM. Evaluation results show that RADAR-Attack can reduce the CodeBLEU of generated code by 19.72% to 38.74% in three state-of-the-art PCGMs (i.e., CodeGPT, PLBART, and CodeT5) in the fine-tuning code generation task, and reduce the Pass@1 of generated code by 32.28% to 44.42% in three state-of-the-art PCGMs (i.e., Replit, CodeGen, and CodeT5+) in the zero-shot code generation task. Moreover, RADAR-Defense is able to reinstate the performance of PCGMs with synthesized method names. These results highlight the importance of good method names in neural code generation and implicate the benefits of studying model robustness in software engineering.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube