Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Football Match Outcomes with eXplainable Machine Learning and the Kelly Index (2211.15734v1)

Published 28 Nov 2022 in cs.LG

Abstract: In this work, a machine learning approach is developed for predicting the outcomes of football matches. The novelty of this research lies in the utilisation of the Kelly Index to first classify matches into categories where each one denotes the different levels of predictive difficulty. Classification models using a wide suite of algorithms were developed for each category of matches in order to determine the efficacy of the approach. In conjunction to this, a set of previously unexplored features were engineering including Elo-based variables. The dataset originated from the Premier League match data covering the 2019-2021 seasons. The findings indicate that the process of decomposing the predictive problem into sub-tasks was effective and produced competitive results with prior works, while the ensemble-based methods were the most effective. The paper also devised an investment strategy in order to evaluate its effectiveness by benchmarking against bookmaker odds. An approach was developed that minimises risk by combining the Kelly Index with the predefined confidence thresholds of the predictive models. The experiments found that the proposed strategy can return a profit when following a conservative approach that focuses primarily on easy-to-predict matches where the predictive models display a high confidence level.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yiming Ren (22 papers)
  2. Teo Susnjak (23 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.