Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Empirical Study of Library Usage and Dependency in Deep Learning Frameworks (2211.15733v1)

Published 28 Nov 2022 in cs.SE and cs.AI

Abstract: Recent advances in deep learning (dl) have led to the release of several dl software libraries such as pytorch, Caffe, and TensorFlow, in order to assist machine learning (ml) practitioners in developing and deploying state-of-the-art deep neural networks (DNN), but they are not able to properly cope with limitations in the dl libraries such as testing or data processing. In this paper, we present a qualitative and quantitative analysis of the most frequent dl libraries combination, the distribution of dl library dependencies across the ml workflow, and formulate a set of recommendations to (i) hardware builders for more optimized accelerators and (ii) library builder for more refined future releases. Our study is based on 1,484 open-source dl projects with 46,110 contributors selected based on their reputation. First, we found an increasing trend in the usage of deep learning libraries. Second, we highlight several usage patterns of deep learning libraries. In addition, we identify dependencies between dl libraries and the most frequent combination where we discover that pytorch and Scikit-learn and, Keras and TensorFlow are the most frequent combination in 18% and 14% of the projects. The developer uses two or three dl libraries in the same projects and tends to use different multiple dl libraries in both the same function and the same files. The developer shows patterns in using various deep-learning libraries and prefers simple functions with fewer arguments and straightforward goals. Finally, we present the implications of our findings for researchers, library maintainers, and hardware vendors.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.