Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fast non-Hermitian Toeplitz eigenvalue computations, joining matrix-less algorithms and FDE approximation matrices (2211.15506v1)

Published 28 Nov 2022 in math.NA and cs.NA

Abstract: The present work is devoted to the eigenvalue asymptotic expansion of the Toeplitz matrix $T_{n}(a)$ whose generating function $a$ is complex valued and has a power singularity at one point. As a consequence, $T_{n}(a)$ is non-Hermitian and we know that the eigenvalue computation is a non-trivial task in the non-Hermitian setting for large sizes. We follow the work of Bogoya, B\"ottcher, Grudsky, and Maximenko and deduce a complete asymptotic expansion for the eigenvalues. After that, we apply matrix-less algorithms, in the spirit of the work by Ekstr\"om, Furci, Garoni, Serra-Capizzano et al, for computing those eigenvalues. Since the inner and extreme eigenvalues have different asymptotic behaviors, we worked on them independently, and combined the results to produce a high precision global numerical and matrix-less algorithm. The numerical results are very precise and the computational cost of the proposed algorithms is independent of the size of the considered matrices for each eigenvalue, which implies a linear cost when all the spectrum is computed. From the viewpoint of real world applications, we emphasize that the matrix class under consideration includes the matrices stemming from the numerical approximation of fractional diffusion equations. In the final conclusion section a concise discussion on the matter and few open problems are presented.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube