Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hyperspectral Demosaicing of Snapshot Camera Images Using Deep Learning (2211.15435v1)

Published 21 Nov 2022 in cs.CV, cs.LG, and eess.IV

Abstract: Spectral imaging technologies have rapidly evolved during the past decades. The recent development of single-camera-one-shot techniques for hyperspectral imaging allows multiple spectral bands to be captured simultaneously (3x3, 4x4 or 5x5 mosaic), opening up a wide range of applications. Examples include intraoperative imaging, agricultural field inspection and food quality assessment. To capture images across a wide spectrum range, i.e. to achieve high spectral resolution, the sensor design sacrifices spatial resolution. With increasing mosaic size, this effect becomes increasingly detrimental. Furthermore, demosaicing is challenging. Without incorporating edge, shape, and object information during interpolation, chromatic artifacts are likely to appear in the obtained images. Recent approaches use neural networks for demosaicing, enabling direct information extraction from image data. However, obtaining training data for these approaches poses a challenge as well. This work proposes a parallel neural network based demosaicing procedure trained on a new ground truth dataset captured in a controlled environment by a hyperspectral snapshot camera with a 4x4 mosaic pattern. The dataset is a combination of real captured scenes with images from publicly available data adapted to the 4x4 mosaic pattern. To obtain real world ground-truth data, we performed multiple camera captures with 1-pixel shifts in order to compose the entire data cube. Experiments show that the proposed network outperforms state-of-art networks.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.