Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Federated Learning for 5G Base Station Traffic Forecasting (2211.15220v2)

Published 28 Nov 2022 in cs.LG, cs.AI, cs.DC, and cs.NI

Abstract: Cellular traffic prediction is of great importance on the path of enabling 5G mobile networks to perform intelligent and efficient infrastructure planning and management. However, available data are limited to base station logging information. Hence, training methods for generating high-quality predictions that can generalize to new observations across diverse parties are in demand. Traditional approaches require collecting measurements from multiple base stations, transmitting them to a central entity and conducting machine learning operations using the acquire data. The dissemination of local observations raises concerns regarding confidentiality and performance, which impede the applicability of machine learning techniques. Although various distributed learning methods have been proposed to address this issue, their application to traffic prediction remains highly unexplored. In this work, we investigate the efficacy of federated learning applied to raw base station LTE data for time-series forecasting. We evaluate one-step predictions using five different neural network architectures trained with a federated setting on non-identically distributed data. Our results show that the learning architectures adapted to the federated setting yield equivalent prediction error to the centralized setting. In addition, preprocessing techniques on base stations enhance forecasting accuracy, while advanced federated aggregators do not surpass simpler approaches. Simulations considering the environmental impact suggest that federated learning holds the potential for reducing carbon emissions and energy consumption. Finally, we consider a large-scale scenario with synthetic data and demonstrate that federated learning reduces the computational and communication costs compared to centralized settings.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.