Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Metric Learning as a Service with Covariance Embedding (2211.15197v1)

Published 28 Nov 2022 in cs.CV

Abstract: With the emergence of deep learning, metric learning has gained significant popularity in numerous machine learning tasks dealing with complex and large-scale datasets, such as information retrieval, object recognition and recommendation systems. Metric learning aims to maximize and minimize inter- and intra-class similarities. However, existing models mainly rely on distance measures to obtain a separable embedding space and implicitly maximize the intra-class similarity while neglecting the inter-class relationship. We argue that to enable metric learning as a service for high-performance deep learning applications, we should also wisely deal with inter-class relationships to obtain a more advanced and meaningful embedding space representation. In this paper, a novel metric learning is presented as a service methodology that incorporates covariance to signify the direction of the linear relationship between data points in an embedding space. Unlike conventional metric learning, our covariance-embedding-enhanced approach enables metric learning as a service to be more expressive for computing similar or dissimilar measures and can capture positive, negative, or neutral relationships. Extensive experiments conducted using various benchmark datasets, including natural, biomedical, and facial images, demonstrate that the proposed model as a service with covariance-embedding optimizations can obtain higher-quality, more separable, and more expressive embedding representations than existing models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.