Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of Foundation Models (2211.14946v2)

Published 27 Nov 2022 in cs.LG

Abstract: A growing ecosystem of large, open-source foundation models has reduced the labeled data and technical expertise necessary to apply machine learning to many new problems. Yet foundation models pose a clear dual-use risk, indiscriminately reducing the costs of building both harmful and beneficial machine learning systems. Policy tools such as restricted model access and export controls are the primary methods currently used to mitigate such dual-use risks. In this work, we review potential safe-release strategies and argue that both policymakers and AI researchers would benefit from fundamentally new technologies enabling more precise control over the downstream usage of open-source foundation models. We propose one such approach: the task blocking paradigm, in which foundation models are trained with an additional mechanism to impede adaptation to harmful tasks without sacrificing performance on desirable tasks. We call the resulting models self-destructing models, inspired by mechanisms that prevent adversaries from using tools for harmful purposes. We present an algorithm for training self-destructing models leveraging techniques from meta-learning and adversarial learning, which we call meta-learned adversarial censoring (MLAC). In a small-scale experiment, we show MLAC can largely prevent a BERT-style model from being re-purposed to perform gender identification without harming the model's ability to perform profession classification.

Citations (42)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.